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Phase locking in on-off intermittency
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Dynamical behavior of on-off intermittency around chaos synchronization-desynchronization bifurcation
parameter line is investigated in coupled identical chaotic oscillators. Along this parameter line, we find that
on-off intermittency can transit from phase-unlocking status to phase-locking one in the phase space of variable
differences, which can be regarded as a codimension-two bifurcation, i.e., combinative bifurcations of desyn-
chronization and phase locking. In the phase-locking case, the motions of all oscillators are chaotic and they
show on-off intermittency with respect to the synchronous manifold, however, spatial phase order of variable
differences is clearly established.
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The problem of chaos synchronization has attracted greathere the single oscillator is the Lorenz model capable of
interest among physicists over the past decade since the piexhibiting chaotic solutiongwe use parameters:=10, B
neering work by Pecora and Carrfll]. In particular, there =1.0, andp=28.0, at which the single Lorenz oscillator is
has been much interest in using chaos synchronization tchaotig, ande andr are scalar symmetric and asymmetric
understand complex dynamics that arises in diverse system®upling parametergl], respectively. Here we set the system
with interacting nonlinear dynamical unitg]. Very recently, sizeN=6. In fact, we can get the similar result for other
a systematical analysis on the instability of synchronous chaaumbers and for different types of couplings.
otic state has been carried dat4]. In Fig. 1(a), we specify the region of chaos synchroniza-

Related to chaos synchronization, some important contion for above coupled modgEgs.(1)]in the (e,r) coupling
cepts, such as bubbling bifurcatigs], riddled basing6], = parameter plane with $” region representing stable syn-
and on-off intermittency 7], have been proposed. As a syn- chronous chaos while U” region corresponding to chaos
chronous chaotic state loses its stability, and if there is ne@lesynchronization. The stabl@instablé region is deter-
other attractor away from the synchronous manifold in themined by the negative(positive largest transversal
phase space, we can usually observe the phenomenon of dryapunov exponent of the synchronous chaotic dileBi-
off intermittency with the “off” state near the synchronous furcation from synchronous chaos to on-off intermittency oc-
chaotic state and the “on” state showing random bursts ofurs on the boundary separating th8”‘and “ U” regions.
large desynchronization. The bifurcation from stable syn-Our aim is to investigate the possible characteristic change
chronous chaos to on-off intermittency has been extensivelgn this on-off intermittency bifurcation line, or specifically,
investigated 7]. However, the features of the motion of on- we go further to study the possible bifurcation point on the
off intermittency have not been studied further. In particular,bifurcation line of Fig. 1a).
the behavior of the desynchronous parts of various chaotic In order to discuss the behavior of on-off intermittency,
oscillators after the instability of synchronous chaos is noiwe will work in the variable difference space
well understood. In this paper we will study this problem on

the variable difference space. Then we find that there is some N

interesting spatial order existing in the seemly random on- Ax(O=x;(0— 21 xj(1),

bursts, and we find a new kind of bifurcation occurring on .

the on-off bifurcation condition, i.e., a bifurcation from i=1,...N. ®)

phase-unlocking on-off intermittency to phase-locking one,
which can be called a codimension-two bifurcation to on-off-By subtracting the spatial average, all variables keep its de-
phase-locking intermittency. synchronized parts and the synchronous chaos is eliminated.
Our model is a system df identical nonlinear oscillators = Slightly above theS-U boundary of Fig. (a), different os-
with periodic boundary conditions and couplings betweercillators may have rather different motions afx;(t) for
nearest neighbors, their desynchronous elements after the instability of the ho-
mogeneous chaos. We are interested in the features of the
5(]. =o(y;—X), Ax;(t) _evolutions in the system state of on-off int_ermittency.
In Figs. 1b), 1(c), and 1d), we display the motions of an
. arbitrary oscillatorAxg at three parameter sets, which corre-
Yi=pX Y Xzt (8 1) (Xj 41— X)) + (€= T) (X1 X)), spond to the circled=3.1y=0.0), square §=9.0y =3.7),
(@) and triangle €=15.1y =6.0) in Fig. Xa), respectively. In all
) these three cases the figures perspicuously indicate the char-
zi=x;y;— Bz, j=1,...N, acteristics of on-off intermittency: irregularity and random
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FIG. 1. (a) The region of stable chaos syn-
chronization(S) and that of chaos desynchroniza-
tion (U) in the coupling parametere(r) plane.
The system behaviors at the parameter gets
=3.1y=0.0(circle), e=9.0y = 3.7 (squarg, and
e=15.1y=6.0 (triangle will be investigated in
0 3 6 9 ' E 30000 sstt')oo 40000 detail. The parameter set(r.)=12.0r.=5.0
(crosg corresponds to the transition point from
phase-unlocking state to phase-locking ofi®,

(c), and(d) The on-off intermittencies ok xg vst

at the parameter sets, circle, square, and triangle,
respectively. Throughout the paper, the integral
time steph=0.01 is used. But, here for each 100
data we plot one for clearly showing the system
behavior in large time scale.

30000 35000 40000 30000
t

bursts. However, below we will find out some regularity in on-off intermittency. In this figure we also plot the positions
these seemly random motions, and find a certain bifurcationf Ax;—H(Ax;), j=1,2...,6 at ararbitrary time instant.

manifested by the phase of these variable differences. In Fig. 2(b) we plot the phase differencest; ; vs t with
In order to define the phase of the variable differences, we ]
take the Hilbert transform ofx; and defineH(Ax;) as Ab; ()= 6;(1)—6:(1), [=23,....6, 5
1 (= Ax(7) where);(t) is given in Eq.(4). Itis interesting to see that all
H[AX;(t)]=PV ;f t—r ) (3) A6 (t)’s perform random walks, i.e., they can stay at cer-

wherePV stands for the Cauchy principal value of the inte-
gral. Now we have constructed our two-dimensional variable
difference plang¢ Ax; ,H(AX;)] for each oscillator, and then
the phase of the variable difference can be uniquely defined
accordingly as

sing,(t)= HLAX()] (4)
A (O TPHTHAX ()P

This technique of signal processing was used in R&3f. 5 " :
to study phase synchronization. Here we apply the same AX
technique to show the rotation of the desynchronous part of
motion separated from the synchronous one in &y. that
is, to study the motion of the variable differences. The phase 401 ¥ i Iy 7/ -
in this chaotic motion can be computed along the normal )
approach for the Rasler attractor based on the partial Poin-
care surface-of-section techniq[&9], that is, crossing the
secant surfacdwe chooseH(Ax)=0, and Ax>0] with
clockwise and counterclockwise directions, we get the phase
shift — 24 and 2m, respectively. Thusg;(t) can vary to any
value[beyond the interval (02) | and with both Eq(4) and
the above technique there is no any ambiguity for determin-
ing phase. i

In Fig. 2, we take a set of coupling parameters;3.1y time
=0.0, Wh'C,h IS denOt_ed by the circle 'n_ Figcal. ar,‘d ShO\(v FIG. 2. e=3.1r=0.0[circle in Fig. 1a)]. (a) The on-off inter-
the dynamical behavior of the system in the variable differ-pigent trajectory is plotted ifAxs, H(Axg)] plane at discrete
ence space. In Fig.(@ we take time stefn=0.01 for the  timest=nAT,AT=0.1n=1,2, ... thatis, we plot one point each
numerics and plot thé xg(t) —H[Axg(t)] trajectory at dis-  for ten data. The circles in the figure indicate the positions of
crete timest=nAT, AT=0.1(in our system the period for Ax;(t),H[Ax;(t)] at an arbitrary time. No phase locking is ob-
a single Lorenz oscillator to make an oscillation loop isserved.(b) The phase differences @f6; , given by Eq.(4) plotted
about 1.14). The scattering points represent random bursts @ t. A6; ; show a behavior of random walk.
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FIG. 3. (a), (b) The same as Figs(® and(b), respectively, with time
e=9.0y =3.7 [square in Fig. @)]. A stick-split behavior in the FIG. 4. (a), (b) The same as Figs(& and(b), respectively, with
motions of A 6; ,(t) is shown in(b). e=15.1y =6.0[triangle in Fig. 1a)]. Phase locking betweefy(t)
] ] is clearly identified.
tain valuesA 6, 4(t)~nw7,n=0,=1,+2, ... for along time,
and then randomly jump a or 2w angle to other values. jng of Eq. (6). This is similar to Fig. 8&). However, unlike
There is no phase locking between variayt). Fig. 3(b), there are no burst breaks of this phase ordering in

In Figs. 3a) and 3b), we use parameters=9.0r=3.7  Fig. 4b). In Figs. 4a) and 4b) phase locking is apparently
[see the hollow square in Fig(a], and do the same as Figs. gpserved.
2(a) and 4b), respectively. The scattering points show on-off  grom Fig. 2 to Fig. 4 there must be a bifurcation from a
intermittency in Fig. 8a) similar to Fig. 2a). However, the  phase unlocking state to a phase locking state. In order to
shapshot of the distribution-of thg six oscillators on thEidentify this bifurcation point we plot in Figs.(8), 5(b), and
Ax;—H(AX;) plane at an arbitrary time show clearly an or- 5(c) |n[\(t)] vs In(t) for the three cases of Figs. 2, 3, and 4,
dered phase distribution: respectively, with the average phase variavi¢g defined as

2w 6
. ~ —(j— 1
Atz i V=g 3, [(A%,50) (A0 (7

n=0,x1,..., j=23,...,6. (6) ) ,
The plots obey the following nice power law:

This phase order is not always kept, and abrupt bursts can
break this order from time to time. In the evolutions of V(t)octP, (8)
A 6; 4(t) of Fig. 3(b), we observe basically the phase relation
(6) and some abrupt breakings of this ordering show typicaln Figs. 5a) and 8b), V(t)’s increase linearly o, D~1,
stick-split motions, which are well known to be a clear pre-indicating random walks of the phase motion. In Figc)5
cursor of phase lockinflL0]. V(t) fluctuates in a constant value and the zero slope of the

In Figs. 4a) and 4b), we take the parameter set plots,D=0, confirms phase locking status. In Figdpwe
=15.1r=6.0 [denoted by the triangle in Fig.(d], and, examine different pointédenoted by different) on the bi-
again, plot the figures same as Figéa)2and 2b), respec- furcation curve of Fig. (a) (for saving computing time we
tively. With considerably large gradient couplingFig. 4(a) choose points slightly above the cuyveind measure the
manifests some features essentially different from Fig),2 slopes of the corresponding [W(t)]—In(t) curves, D’s,
though the random scattering points showing intermittentigainstr. A sharp dropdown ob from nearlyD =1 to zero
bursts remain unchanged. The snapshot of the distribution @ft the pointr,~5.0 in our case indicates that a bifurcation
the six oscillators in Fig. @) demonstrates the phase order- from phase unlocking to phase locking occurs.
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S al =4l FIG. 5. (a), (b), (c). In[V(t)] plotted vs Inf) for
= = the motions at circle, square, and triangle of Fig.
T2 T er 1(a), respectively, where the variancé(t) is
or ol given in Eq.(7). In (8 and (b), V(t) increases
i) . . . linearly witht, D~1, confirming random walk
0 I:(t) 8 0 ln‘%t) 8 behavior ofA g, 4(t), while the practically con-
0.0 © 12[q) stantV(t) in (c) indicates a phase-locking status.
1ol e by (d) The slope of the IV(t)]—In(t) curve,D, plot-
0.1 ' ted vsr. All the slopes are computed along the
— e 08f bifurcation line of Fig. 1a) (slightly above the
g 02 o 96} line). The phase locking bifurcation on the
£ 0.4; \ desynchronization bifurcation line occurs at
-0.3} o2t r=r.~5.0.
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In conclusion, we have investigated the characteristi¢ Ax;(t),Ay;(t),Az(t)]. The reason is that in the
changes of on-off intermittency in the synchronization-[x;(t),y;(t),z;(t)] space, the synchronous chaotic motion is
desynchronization bifurcation line in coupled chaotic oscil-not subtracted, and with this element the equal-separation
lators with both symmetric and asymmetric couplings. It isphase distribution of Fig. 4 can never be observed. More-
shown that by Varying certain control parameters the On'Ofbver, the phenomena found in this paper may be genera”y
intermittencie_s of different oscillators_ can change fromgpserved in coupled chaotic systems. Very rich behaviors,
phase-unlocking status to phase-locking status through @cjuding multicodimension bifurcations, are expected to be
stick-split phase relation. This phase-locking transition 0cyqssiple at the instability of synchronous chaos, if increasing

curs in a bifurcation line of instability of the synchronous \\,mper of control parameters are available. This is an inter-
chaos. Thus, this transition can be regarded as @sting field worthwhile investigating

codimension-two bifurcation of coupled chaotic oscillators.
An important point is that the new phase-locking transition This research was supported by the National Natural Sci-
cannot be directly observed in the original variable spaceence Foundation of China, the Nonlinear Science Project of
i.e., the space dfx;(t),y;(t),z;(t)], and it can be identified China, and the Foundation of Doctoral training of Educa-
only in the variable difference space, i.e., the space ofional Bureau of China.
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