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Phase locking in on-off intermittency
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Dynamical behavior of on-off intermittency around chaos synchronization-desynchronization bifurcation
parameter line is investigated in coupled identical chaotic oscillators. Along this parameter line, we find that
on-off intermittency can transit from phase-unlocking status to phase-locking one in the phase space of variable
differences, which can be regarded as a codimension-two bifurcation, i.e., combinative bifurcations of desyn-
chronization and phase locking. In the phase-locking case, the motions of all oscillators are chaotic and they
show on-off intermittency with respect to the synchronous manifold, however, spatial phase order of variable
differences is clearly established.
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The problem of chaos synchronization has attracted g
interest among physicists over the past decade since the
neering work by Pecora and Carroll@1#. In particular, there
has been much interest in using chaos synchronizatio
understand complex dynamics that arises in diverse sys
with interacting nonlinear dynamical units@2#. Very recently,
a systematical analysis on the instability of synchronous c
otic state has been carried out@3,4#.

Related to chaos synchronization, some important c
cepts, such as bubbling bifurcation@5#, riddled basins@6#,
and on-off intermittency@7#, have been proposed. As a sy
chronous chaotic state loses its stability, and if there is
other attractor away from the synchronous manifold in
phase space, we can usually observe the phenomenon o
off intermittency with the ‘‘off’’ state near the synchronou
chaotic state and the ‘‘on’’ state showing random bursts
large desynchronization. The bifurcation from stable s
chronous chaos to on-off intermittency has been extensi
investigated@7#. However, the features of the motion of o
off intermittency have not been studied further. In particu
the behavior of the desynchronous parts of various cha
oscillators after the instability of synchronous chaos is
well understood. In this paper we will study this problem
the variable difference space. Then we find that there is s
interesting spatial order existing in the seemly random
bursts, and we find a new kind of bifurcation occurring
the on-off bifurcation condition, i.e., a bifurcation from
phase-unlocking on-off intermittency to phase-locking o
which can be called a codimension-two bifurcation to on-o
phase-locking intermittency.

Our model is a system ofN identical nonlinear oscillators
with periodic boundary conditions and couplings betwe
nearest neighbors,

ẋ j5s~yj2xj !,

ẏ j5rxj2yj2xjzj1~e1r !~xj 112xj !1~e2r !~xj 212xj !,
~1!

żj5xjyj2bzj , j 51, . . . ,N,
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where the single oscillator is the Lorenz model capable
exhibiting chaotic solutions~we use parameters:s510, b
51.0, andr528.0, at which the single Lorenz oscillator
chaotic!, and e and r are scalar symmetric and asymmetr
coupling parameters@4#, respectively. Here we set the syste
sizeN56. In fact, we can get the similar result for otherN
numbers and for different types of couplings.

In Fig. 1~a!, we specify the region of chaos synchroniz
tion for above coupled model@Eqs.~1!# in the (e,r ) coupling
parameter plane with ‘‘S’’ region representing stable syn
chronous chaos while ‘‘U ’’ region corresponding to chao
desynchronization. The stable~unstable! region is deter-
mined by the negative ~positive! largest transversa
Lyapunov exponent of the synchronous chaotic state@4#. Bi-
furcation from synchronous chaos to on-off intermittency o
curs on the boundary separating the ‘‘S’’ and ‘‘ U ’’ regions.
Our aim is to investigate the possible characteristic cha
on this on-off intermittency bifurcation line, or specificall
we go further to study the possible bifurcation point on t
bifurcation line of Fig. 1~a!.

In order to discuss the behavior of on-off intermittenc
we will work in the variable difference space

Dxj~ t !5xj~ t !2
1

N (
j 51

N

xj~ t !,

j 51, . . . ,N. ~2!

By subtracting the spatial average, all variables keep its
synchronized parts and the synchronous chaos is elimina
Slightly above theS-U boundary of Fig. 1~a!, different os-
cillators may have rather different motions ofDxj (t) for
their desynchronous elements after the instability of the
mogeneous chaos. We are interested in the features o
Dxj (t) evolutions in the system state of on-off intermittenc

In Figs. 1~b!, 1~c!, and 1~d!, we display the motions of an
arbitrary oscillatorDx6 at three parameter sets, which corr
spond to the circle (e53.1,r 50.0), square (e59.0,r 53.7),
and triangle (e515.1,r 56.0) in Fig. 1~a!, respectively. In all
these three cases the figures perspicuously indicate the
acteristics of on-off intermittency: irregularity and rando
©2001 The American Physical Society03-1
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FIG. 1. ~a! The region of stable chaos syn
chronization~S! and that of chaos desynchroniza
tion ~U! in the coupling parameter (e,r ) plane.
The system behaviors at the parameter setse
53.1,r 50.0 ~circle!, e59.0,r 53.7 ~square!, and
e515.1,r 56.0 ~triangle! will be investigated in
detail. The parameter sete(r c)512.0,r c55.0
~cross! corresponds to the transition point from
phase-unlocking state to phase-locking one.~b!,
~c!, and~d! The on-off intermittencies ofDx6 vs t
at the parameter sets, circle, square, and trian
respectively. Throughout the paper, the integ
time steph50.01 is used. But, here for each 10
data we plot one for clearly showing the syste
behavior in large time scale.
in
tio

w

e-
bl

ne

m
t

as
a

in

a

in

er

r
is
ts

s

l
er-

of
-

bursts. However, below we will find out some regularity
these seemly random motions, and find a certain bifurca
manifested by the phase of these variable differences.

In order to define the phase of the variable differences,
take the Hilbert transform ofDxj and defineH(Dxj ) as

H@Dxj~ t !#5PVS 1

pE2`

` Dxj~t!

t2t
dt D , ~3!

wherePV stands for the Cauchy principal value of the int
gral. Now we have constructed our two-dimensional varia
difference plane@Dxj ,H(Dxj )# for each oscillator, and then
the phase of the variable difference can be uniquely defi
accordingly as

sinu j~ t !5
H@Dxj~ t !#

A@Dxj~ t !#21@H„Dxj~ t !…#2
. ~4!

This technique of signal processing was used in Ref.@8#
to study phase synchronization. Here we apply the sa
technique to show the rotation of the desynchronous par
motion separated from the synchronous one in Eq.~2!, that
is, to study the motion of the variable differences. The ph
in this chaotic motion can be computed along the norm
approach for the Ro¨ssler attractor based on the partial Po
care surface-of-section technique@8,9#, that is, crossing the
secant surface@we chooseH(Dx)50, and Dx.0# with
clockwise and counterclockwise directions, we get the ph
shift 22p and 2p, respectively. Thus,u j (t) can vary to any
value@beyond the interval (0,2p)# and with both Eq.~4! and
the above technique there is no any ambiguity for determ
ing phase.

In Fig. 2, we take a set of coupling parameters,e53.1,r
50.0, which is denoted by the circle in Fig. 1~a!, and show
the dynamical behavior of the system in the variable diff
ence space. In Fig. 2~a! we take time steph50.01 for the
numerics and plot theDx6(t)2H@Dx6(t)# trajectory at dis-
crete timest5nDT, DT50.1 ~in our system the period fo
a single Lorenz oscillator to make an oscillation loop
about 1.14). The scattering points represent random burs
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on-off intermittency. In this figure we also plot the position
of Dxj2H(Dxj ), j 51,2 . . . ,6 at anarbitrary time instant.
In Fig. 2~b! we plot the phase differencesDu j ,1 vs t with

Du j ,1~ t !5u j~ t !2u1~ t !, j 52,3, . . . ,6, ~5!

whereu j (t) is given in Eq.~4!. It is interesting to see that al
Du j ,1(t)’s perform random walks, i.e., they can stay at c

FIG. 2. e53.1,r 50.0 @circle in Fig. 1~a!#. ~a! The on-off inter-
mittent trajectory is plotted in@Dx6 , H(Dx6)# plane at discrete
timest5nDT,DT50.1,n51,2, . . . ,that is, we plot one point each
for ten data. The circles in the figure indicate the positions
Dxj (t),H@Dxj (t)# at an arbitrary time. No phase locking is ob
served.~b! The phase differences ofDu j ,1 given by Eq.~4! plotted
vs t. Du j ,1 show a behavior of random walk.
3-2
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tain valuesDu j ,1(t)'np,n50,61,62, . . . for along time,
and then randomly jump ap or 2p angle to other values
There is no phase locking between variousu j (t).

In Figs. 3~a! and 3~b!, we use parameterse59.0,r 53.7
@see the hollow square in Fig. 1~a!#, and do the same as Fig
2~a! and 2~b!, respectively. The scattering points show on-
intermittency in Fig. 3~a! similar to Fig. 2~a!. However, the
snapshot of the distribution of the six oscillators on t
Dxj2H(Dxj ) plane at an arbitrary time show clearly an o
dered phase distribution:

Du j ,1~ t !'2np1
2p

6
~ j 21!

n50,61, . . . , j 52,3, . . . ,6. ~6!

This phase order is not always kept, and abrupt bursts
break this order from time to time. In the evolutions
Du j ,1(t) of Fig. 3~b!, we observe basically the phase relati
~6! and some abrupt breakings of this ordering show typ
stick-split motions, which are well known to be a clear pr
cursor of phase locking@10#.

In Figs. 4~a! and 4~b!, we take the parameter sete
515.1,r 56.0 @denoted by the triangle in Fig. 1~a!#, and,
again, plot the figures same as Figs. 2~a! and 2~b!, respec-
tively. With considerably large gradient couplingr, Fig. 4~a!
manifests some features essentially different from Fig. 2~a!,
though the random scattering points showing intermitt
bursts remain unchanged. The snapshot of the distributio
the six oscillators in Fig. 4~a! demonstrates the phase orde

FIG. 3. ~a!, ~b! The same as Figs. 2~a! and~b!, respectively, with
e59.0,r 53.7 @square in Fig. 1~a!#. A stick-split behavior in the
motions ofDu j ,1(t) is shown in~b!.
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ing of Eq. ~6!. This is similar to Fig. 3~a!. However, unlike
Fig. 3~b!, there are no burst breaks of this phase ordering
Fig. 4~b!. In Figs. 4~a! and 4~b! phase locking is apparentl
observed.

From Fig. 2 to Fig. 4 there must be a bifurcation from
phase unlocking state to a phase locking state. In orde
identify this bifurcation point we plot in Figs. 5~a!, 5~b!, and
5~c! ln@V(t)# vs ln(t) for the three cases of Figs. 2, 3, and
respectively, with the average phase varianceV(t) defined as

V~ t !5
1

5 (
j 52

6

@^D2u j ,1~ t !&2^Du j ,1~ t !&2#. ~7!

The plots obey the following nice power law:

V~ t !}tD. ~8!

In Figs. 5~a! and 5~b!, V(t)’s increase linearly ont, D'1,
indicating random walks of the phase motion. In Fig. 5~c!,
V(t) fluctuates in a constant value and the zero slope of
plots, D50, confirms phase locking status. In Fig. 5~d! we
examine different points~denoted by differentr ) on the bi-
furcation curve of Fig. 1~a! ~for saving computing time we
choose points slightly above the curve!, and measure the
slopes of the corresponding ln@V(t)#2ln(t) curves, D ’s,
againstr. A sharp dropdown ofD from nearlyD51 to zero
at the pointr c'5.0 in our case indicates that a bifurcatio
from phase unlocking to phase locking occurs.

FIG. 4. ~a!, ~b! The same as Figs. 2~a! and~b!, respectively, with
e515.1,r 56.0 @triangle in Fig. 1~a!#. Phase locking betweenu j (t)
is clearly identified.
3-3
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FIG. 5. ~a!, ~b!, ~c!. ln@V(t)# plotted vs ln(t) for
the motions at circle, square, and triangle of F
1~a!, respectively, where the varianceV(t) is
given in Eq. ~7!. In ~a! and ~b!, V(t) increases
linearly with t, D'1, confirming random walk
behavior ofDu j ,1(t), while the practically con-
stantV(t) in ~c! indicates a phase-locking statu
~d! The slope of the ln@V(t)#2ln(t) curve,D, plot-
ted vs r. All the slopes are computed along th
bifurcation line of Fig. 1~a! ~slightly above the
line!. The phase locking bifurcation on th
desynchronization bifurcation line occurs
r 5r c'5.0.
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In conclusion, we have investigated the characteri
changes of on-off intermittency in the synchronizatio
desynchronization bifurcation line in coupled chaotic osc
lators with both symmetric and asymmetric couplings. It
shown that by varying certain control parameters the on
intermittencies of different oscillators can change fro
phase-unlocking status to phase-locking status throug
stick-split phase relation. This phase-locking transition
curs in a bifurcation line of instability of the synchronou
chaos. Thus, this transition can be regarded as
codimension-two bifurcation of coupled chaotic oscillato
An important point is that the new phase-locking transiti
cannot be directly observed in the original variable spa
i.e., the space of@xj (t),yj (t),zj (t)#, and it can be identified
only in the variable difference space, i.e., the space
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@Dxj (t),Dyj (t),Dzj (t)#. The reason is that in the
@xj (t),yj (t),zj (t)# space, the synchronous chaotic motion
not subtracted, and with this element the equal-separa
phase distribution of Fig. 4 can never be observed. Mo
over, the phenomena found in this paper may be gener
observed in coupled chaotic systems. Very rich behavi
including multicodimension bifurcations, are expected to
possible at the instability of synchronous chaos, if increas
number of control parameters are available. This is an in
esting field worthwhile investigating.
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